Abstract
AbstractThe authors demonstrate improved switching voltage, retention, and endurance properties in HfZrOx (HZO)‐based n/p‐ferroelectric field‐effect transistors (FeFETs) via oxygen scavenging. Oxygen scavenging using titanium (Ti) in the gate stack successfully reduce the thickness of interfacial oxide between HZO and Si and the oxygen vacancy at the bottom interface of the HZO film. The n/p‐FeFETs with scavenging exhibit an immediate read‐after‐write with stable retention property and improved endurance property. In particular, n‐FeFET with scavenging exhibits excellent endurance property that does not show breakdown up to 1010 cycles. The charge trapping model in the n/p‐FeFETs is presented to explain why the effect of oxygen scavenging is more pronounced in n‐FeFET than in p‐FeFET. Finally, further switching voltage scaling potential is estimated by scavenging and HZO thickness scaling. It is believed that this work contributes to the development of low‐power FeFET and the understanding of FeFET operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.