Abstract

AbstractThe formation of the α-Al2O3 scale on reactive element (RE)-doped FeCrAl alloys is commonly believed to be primarily caused by inward oxygen transport along grain boundaries. However, this study suggests that metal ion outward diffusion also plays a role in the development of the oxide scales and their microstructural characteristics. The study examines the oxidation behavior and grain boundary outward diffusion of iron-chromium alloys containing ~ 10 at% aluminum and ~ 22 at% chromium, doped with an over-critical concentration of REs, i.e., Zr and Hf. All samples were investigated after thermal exposure at 1100 °C by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom probe tomography (APT). As a result of the overdoping, a considerable increase in oxide growth, an increase in the depth of internal oxidation, and RE-oxide formation near and at oxide grain boundaries (GBs) were observed as a consequence of increased inward and outward diffusion. The effect of overdoping manifests itself differently depending on the RE type and amount due to different solubility, ionic size, and electronic structure of alumina. The sample with Zr retained the adhesion of alumina to the alloy after the first and second thermal exposure, while Hf overdoping resulted in severe spallation after the second thermal exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call