Abstract

Extensive previous research has established that the oxidation of FeCrAl alloys at temperatures ≥1000°C results in the formation of α-Al2O3 oxide scales, and that minor alloy constituents (particularly Reactive Elements (RE) such as Y, Hf, Zr, etc.) can change the oxide growth mechanism. A knowledge of the segregation behaviour of these REs is thus central to our understanding of the oxidation behaviour of these, technologically important, range of alloys.The new SuperSTEM microscope at the Daresbury Laboratory offers considerable potential for a detailed study of the segregation to oxide grain boundaries at the atomic level. The microscope has an aberration corrector fitted to the objective lens, allowing the formation of sub-Angstrom probe for simultaneous ultra-high resolution high angle annular dark field (HAADF) imaging and atomic-column electron energy loss spectroscopy (EELS). This paper reports on an initial study of oxide grain boundary segregation in commercial and model FeCrAlRE alloys containing controlled additions of the reactive elements, yttrium, zirconium and hafnium oxidised at 1250°C, in air, for 50 hours. Both yttrium and hafnium are shown to segregate to the grain boundaries while hafnium rich particules form in the outer region of the scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call