Abstract

Although sufficient tolerance against attack by superoxide radicals (O2 - ) has been mainly recognized as an important property for Li-O2 battery (LOB) electrolytes, recent evidence has revealed that other critical factors also govern the cyclability, prompting a reconsideration of the basic design guidelines of LOB electrolytes. Here, we found that LOBs equipped with a N,N-dimethylacetamide (DMA)-based electrolyte exhibited better cyclability compared with other standard LOB electrolytes. This superior cyclability is attributable to the capabilities of quenching 1 O2 and forming highly decomposable Li2 O2 . The 1 O2 quenching capability is equivalent to that of a tetraglyme-based electrolyte containing a several millimolar concentration of a typical chemical quencher. Based on these overlooked factors, the DMA-based electrolyte led to superior cyclability despite its lower O2 - tolerance. Thus, the present work provides a novel design guideline for the development of LOB electrolytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call