Abstract

The white koji fungus Aspergillus luchuensis mut. kawachii secretes substantial amounts of citric acid through the expression of the citric acid exporter CexA, a member of the DHA1 family. In this study, we aimed to characterize 11 CexA homologs (Chl proteins) encoded in the genome of A.luchuensis mut. kawachii to identify novel transporters useful for organic acid production. We constructed overexpression strains of chl genes using a cexA disruptant of the A.luchuensis mut. kawachii as the host strain, which prevented excessive secretion of citric acid into the culture supernatant. Subsequently, we evaluated the effects of overexpression of chl on producing organic acids by analyzing the culture supernatant. All overexpression strains did not exhibit significant citric acid accumulation in the culture supernatant, indicating that Chl proteins are not responsible for citric acid export. Furthermore, the ChlH overexpression strain displayed an accumulation of 2-oxoglutaric and fumaric acids in the culture supernatant, while the ChlK overexpression strain exhibited the accumulation of 2-oxoglutaric, malic and succinic acids. Notably, the ChlH and ChlK overexpression led to a substantial increase in the production of 2-oxoglutaric acid, reaching approximately 25mM and 50mM, respectively. Furthermore, ChlH and ChlK overexpression also significantly increased the secretory production of dicarboxylic acids, including 2-oxoglutaric acid, in the yellow koji fungus, Aspergillus oryzae. Our study demonstrates that overexpression of DHA1 family gene results in enhanced secretion of organic acids in koji fungi of the genus Aspergillus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call