Abstract

In this paper, a different type of pulse width modulation (PWM) control scheme for a buck converter is introduced. The proposed buck converter uses PWM with frequency hopping and a low quiescent–current low dropout (LDO) voltage regulator with a power supply rejection ratio enhancer to reduce high spurs, harmonics and output voltage ripples. The low quiescent–current LDO voltage regulator is not described in this paper. A three-bit binary-to-thermometer decoder scheme and voltage ripple controller (VRC) is implemented to achieve low voltage ripple less than 3mV to increase the efficiency of the buck converter. An internal clock that is synchronized to the internal switching frequency is used to set the hopping rate. A center frequency of 2.5MHz was chosen because of the bluetooth low energy (BLE) application. This proposed DC-DC buck converter is available for low-current noise-sensitive loads such as BLE and radio frequency loads in portable communications devices. Thus, a high-efficiency and low-voltage ripple is required. This results in a less than 2% drop in the regulator’s efficiency, and a less than 3mV voltage ripple, with -26 dBm peak spur reduction operating in the buck converter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.