Abstract

Internet-based social and interactive video applications have become major constituents of the envisaged applications for next-generation multimedia networks. However, inherently dynamic network conditions, together with varying user expectations, pose many challenges for resource allocation mechanisms for such applications. Yet, in addition to addressing these challenges, service providers must also consider how to mitigate their operational costs (e.g., energy costs, equipment costs) while satisfying the end-user quality of service (QoS) expectations. This paper proposes a heuristic solution to the problem, where the energy incurred by the applications, and the monetary costs associated with the service infrastructure, are minimized while simultaneously maximizing the average end-user QoS. We evaluate the performance of the proposed solution in terms of serving probability, i.e., the likelihood of being able to allocate resources to groups of users, the computation time of the resource allocation process, and the adaptability and sensitivity to dynamic network conditions. The proposed method demonstrates improvements in serving probability of up to 27%, in comparison with greedy resource allocation schemes, and a several-orders-of-magnitude reduction in computation time, compared to the linear programming approach, which significantly reduces the service-interrupted user percentage when operating under variable network conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call