Abstract

Addition reaction studies and ab initio calculations on methylenecyclohexane and 5-methylene-1,3-dioxane systems suggest that two electronic factors contribute to the stereoselectivity of epoxidation and diimide reduction. These are respectively the spatial anisotropy of the HOMO with respect to the two faces of the double bond, common to both molecules, which is likely to be responsible for the overall axial stereofacial selectivity exhibited, and a similar anisotropy in the electrostatic potential field of the methylenedioxane caused by the oxygens; which also favours attack from an axial direction by polarisable electrophilic species. The anisotropy of the HOMO arises from the important topological difference between the contributions made to the HOMO by the periplanar β C–H σ bonds and opposing β C–O or C–C σ bonds. Catalytic reduction proceeds with equatorial face selectivity for both the cyclohexane and the dioxane systems and appears to be governed largely by steric effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.