Abstract

We investigate the properties of a deterministic walk, whose locomotion rule is always to travel to the nearest site. Initially the sites are randomly distributed in a closed rectangular (ALxL) landscape and, once reached, they become unavailable for future visits. As expected, the walker step lengths present characteristic scales in one (L-->0) and two (AL approximately L) dimensions. However, we find scale invariance for an intermediate geometry, when the landscape is a thin striplike region. This result is induced geometrically by a dynamical trapping mechanism, leading to a power-law distribution for the step lengths. The relevance of our findings in broader contexts--of both deterministic and random walks--is also briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.