Abstract

The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random walk process in a one-dimensional lattice. We assume that the variation of the number of active sites has three possibilities in each update: to increase by 1 with probability f1, to decrease by 1 with probability f2, or remain unchanged with probability 1-f1 -f2. This mimics the dynamics in the system. Power-law distributions of the lifetime are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized criticality may be caused by the balance of competitive interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call