Abstract
The worldwide increasing consumption of the phosphonates 2-phosphonobutane-1,2,4-tricarboxylic acid [PBTC], 1-hydroxyethane 1,1-diphosphonic acid [HEDP], nitrilotris(methylene phosphonic acid) [NTMP], ethylenediamine tetra(methylene phosphonic acid) [EDTMP] and diethylenetriamine penta(methylene phosphonic acid) [DTPMP] over the past decades put phosphonates into focus of environmental scientists and agencies, as they are increasingly discussed in the context of various environmental problems. The hitherto difficult analysis of phosphonates contributed to the fact that very little is known about their concentrations and behavior in the environment. This work critically reviews the existing literature up to the year 2016 on the potential environmental relevance of phosphonates, their biotic and abiotic degradability, and their removal in wastewater treatment plants (WWTPs). Accordingly, despite their stability against biological degradation, phosphonates can be removed with relatively high efficiency (>80%) in WWTPs operated with chemical phosphate precipitation. In the literature, however, to our knowledge, there is no information as to whether an enhanced biological phosphorus removal alone is sufficient for such high removal rates and whether the achievable phosphonate concentrations in effluents are sufficiently low to prevent eutrophication. It is currently expected that phosphonates, although being complexing agents, do not remobilize heavy metals from sediments in a significant amount since the phosphonate concentrations required for this (>50μg/L) are considerably higher than the concentrations determined in surface waters. Various publications also point out that phosphonates are harmless to a variety of aquatic organisms. Moreover, degradation products thereof such as N-(phosphonomethyl)glycine and aminomethylphosphonic acid are regarded as being particularly critical. Despite their high stability against biological degradation, phosphonates contribute to eutrophication due to abiotic degradation (mainly photolysis). Furthermore, the literature reports on the fact that phosphonates in high concentrations interfere with phosphate precipitation in WWTPs. Thus, it is recommended to remove phosphonates, in particular from industrial wastewaters, before discharging them into water bodies or WWTPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.