Abstract

Abstract Carbon nanotubes and semiconductor nanowires have been thoroughly studied for the future replacement of silicon-based complementary metal oxide semiconductor (CMOS) devices and circuits. However, the organisation of these nanomaterials in dense transistor arrays, where each device is capable of delivering drive currents comparable with those of their silicon counterparts is still a big challenge. Here, we present a novel approach to the organisation of carbon nanotubes and semiconductor nanowires, based on the use of porous lateral alumina templates obtained by the controlled anodic oxidation of aluminium thin films. We discuss the growth of nanomaterials inside the pores of such templates and show the feasibility of our approach. Our first results point to further work on controlling the synthesis of catalyst nanoparticles at the bottom of the pores, these particles being necessary to nucleate and sustain the growth of carbon nanotubes or semiconductor nanowires. To cite this article: D. Pribat et al., C. R. Physique 10 (2009).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call