Abstract
Organic mixed ionic-electronic conductors (OMIECs) could revolutionize bioelectronics by enabling seamless integration with biological systems. This review explores their role in neural biomimicry and biointerfacing, with a focus on how backbone design, sidechain optimization, and antiambipolarity impact performance. Recent advances highlight OMIECs' biocompatibility and mechanical compliance, making them ideal for bioelectronic applications. However, challenges such as mechanical mismatch and electrical impedance remain. We discuss innovative solutions to these issues, enhancing OMIEC functionality. In neuromorphic bioelectronics, OMIECs show promise for bridging artificial and biological neural systems, though further improvements in conductivity and resolution are needed. Continued innovation in materials and design is crucial to unlocking their full potential, driving advancements in both technology and medicine.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have