Abstract

Paleolimnological studies in western South America, where meteorological stations are scarce, are critical to obtain more realistic and reliable regional reconstructions of past climate and environmental changes, including vegetation and water budget variability. However, climate and environmental geochemical indicators must be tested before they can be applied with confidence. Here we present a survey of lacustrine surface sediment (core top, 0 to ~1cm) biogeochemical proxies (total organic carbon [TOC], total nitrogen [TN], carbon/nitrogen ratio [C/N ratio] and bulk organic δ13C and total δ15N) from a suite of 72 lakes spanning the transition from a Mediterranean climate with a patchwork of cultivated vegetation, pastureland, and conifers in central Chile to a rainy temperate climate dominated by broadleaf deciduous and evergreen forest further south. Sedimentary data are compared to the latitudinal and orographic climatic trends of the region based on the climatology (precipitation and temperature) produced with Climate Forecast System Reanalysis (CFSR) data and the modern Southern Hemisphere Westerly Winds (SWW) location. The geochemical data show inflection points at ~42°S latitude and ~1500m elevation that are likely related to the northern limit of influence of the SWW and elevation of the snow line, respectively. Overall the organic proxies were able to mimic climatic trends (Mean Annual Precipitation [MAP] and temperature [MAT]), indicating that they are a useful tool to be included in paleoclimatological reconstruction of the region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call