Abstract

Aerogel materials are used in various fields, but there is a shortage of aerogel materials with an excellent combination of mechanical properties, thermal stability, and easy preparation. In this study, polyimide aerogel materials with superior mechanical properties, thermal stability, and low thermal conductivity were prepared by forming a double-gel system in the liquid phase. The amino-modified gel, prepared by coating SiO2 nano-microspheres with GO through a modified sol-gel method (SiO2@GO-NH2), was subsequently homogeneously dispersed with PAA wet gel in water to form a double-gel system. The construction of a double-gel system enabled the PI aerogel to shape a unique honeycomb porous structure and a multi-layered interface of PI/SiO2/GO. The final obtained PI aerogel possessed effective thermal conductivity (0.0309 W/m·K) and a high specific modulus (46.19 m2/s2). In addition, the high thermal stability (543.80 °C in Ar atmosphere) and the ability to retain properties under heat treatment proved its durability in high thermal environments. The hydrophobicity (131.55°) proves its resistance to water from the environment. The excellent performance of this PI aerogel and its durability in thermal working environments make it possible to be applied in varied industrial and research fields, such as construction and energy, where heat and thermal insulation are required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call