Abstract

Climate warming poses a serious threat to soil biodiversity and crop yield. Application of organic fertilizer has been extensively practiced to improve soil health and crop productivity. However, information is limited about the effects of organic fertilizer on microbial communities and diversity (richness) under warming. Thus, to investigate the interactive effects of temperature (ambient temperature and warming) and fertilizer (chemical fertilizer and partial substitution of chemical fertilizer with organic fertilizer) on microbial properties and wheat yield, a two-factorial pot experiment was conducted using soils with high and low fertility The results showed that warming and organic fertilizer had minor effects on bacterial Shannon and Simpson indexes. Due to concomitant reductions in soil moisture, warming decreased the average Chao index by 5.4 % and Ace index by 3.8 % for soils with high and low fertility (P < 0.05). High-throughput sequence presented that dominated genus was Bacillus with spore-forming ability. Under warming and drying conditions, microbes with adaptive traits (spore-forming ability) would outcompete the other microbes, and decrease microbial Chao and Ace index (richness). However, organic fertilizer counteracted the adverse effects of warming on microbial richness attributed to positive interaction between temperature and fertilizer on soil nutrients and organic carbon. The strong relationships between bacterial richness and wheat yield, as well as soil nutrients, highlighted the importance of soil biodiversity in improving soil nutrients and crop productivity. Partial substitution of chemical fertilizer with organic fertilizer significantly increased wheat yield by 27.1 % and 14.9 % under ambient temperature and by 28.0 % and 19.6 % under warming for soils with high and low fertility, respectively. Overall, this study provided the possibility to increase bacterial richness related to nutrient turnover and crop production by organic fertilizer application with reduced chemical fertilizer, especially under climate warming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call