Abstract

The shapes and alignment of elastic vesicles similar to red blood cells (RBCs) in cylindrical capillary flow are investigated by mesoscopic hydrodynamic simulations. We study the collective flow behavior of many RBCs, where the capillary diameter is comparable to the diameter of the RBCs. Two essential control parameters are the RBC volume fraction (the tube hematocrit, HT), and the suspension flow velocity. Depending on HT, flow velocity and capillary radius, the RBC suspension exhibits a disordered phase and two distinct ordered phases, consisting of a single file of parachute-shaped cells and a zigzag arrangement of slipper-shaped cells, respectively. We argue that thermal fluctuations, included in the simulation method, coupled to hydrodynamic flows are important contributors to the RBC morphology. We examine the changes to the phase structures when the capillary diameter and the material properties (bending rigidity κ and stretching modulus μ) of the model RBCs are varied, constructing phase diagrams for each case. We focus on capillary diameters, which range from about 1.0 to about 1.4 times the RBC long diameter. For the smallest capillary diameter, the single-file arrangement dominates; for the largest diameter, the ordered zigzag arrangement begins to loose its stability and alternates with an asymmetric structure with two lanes of differently oriented cells. In simulations with long capillaries, the coexistence of different phases can be observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call