Abstract

Abstract The rheology of suspensions of soft particles, such as red blood cells, is a long-standing problem in science and engineering due to the complex interplay between deformable microstructure and the macroscale flow. The major challenge stems from the free-boundary nature of the particle interface. Lipid bilayer membranes that envelop cells and vesicles are particularly complex interfaces because of their unusual mechanics: the molecularly thin membrane is a highly-flexible incompressible fluid sheet. As a result, particles made of closed lipid bilayers (red cells and vesicles) can exhibit richer dynamics than would capsules and drops. We overview the key experimental observations and recent advances in the theoretical modeling of the vesicles and red blood cells in flow. To cite this article: P.M. Vlahovska et al., C. R. Physique 10 (2009).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.