Abstract
Evaluating atmospheric dispersion and radiological doses in the vicinity of buildings is required for small modular reactors (SMRs) because of the reduced size of their exclusion area boundary. The current Canadian nuclear industry tool for these calculations implements the methodology defined in CSA Standard N288.2-M91, which was written to support large Canada Deuterium Uranium (CANDU) nuclear reactors as opposed to SMRs. The ORCA (On/offsite Radiological Consequences of Accidents) code has been developed to address this technical concern in addition to evaluating atmospheric dispersion and doses in the far field. The code calculates worker and public doses following an airborne release of radioactive material into the atmosphere under postulated accident conditions at a nuclear facility. The current paper presents the key assumptions and methods utilized in ORCA and discusses qualification of the software to the requirements of CSA Standard N286.7-16. The new model is applicable to SMRs and existing reactor designs and reduces conservatisms in the near field (i.e., <1 km from the source) relative to the methods in CSA N288.2-M91.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.