Abstract

A low temperature (≦120 °C) fabrication method to form relatively thick SiO2/Si structure with a Si source has been developed using the advanced nitric acid oxidation of Si (NAOS) method, and the formation mechanism has been investigated. The reaction mechanism consists of direct oxidation of Si, dissolution of Si sources, and surface reaction of the dissolved Si species. The dissolved Si species is present in HNO3 solutions as mono-silicic acid and reacts with oxidizing species formed by decomposition of HNO3 on an ultrathin SiO2 layer (i.e., 1.4 nm) produced by the direct oxidation of Si substrates with HNO3 solutions. To achieve a uniform thickness of SiO2 layer with a smooth surface, HNO3 solutions with concentrations higher than 60 wt. % are needed because the dissolved Si species polymerizes in HNO3 solutions when the concentration is below 60 wt. %, resulting in the formation of SiO2 particles in HNO3, which are deposited afterwards on the SiO2 layer. In spite of the low temperature formation at 120 °C, the electrical characteristics of the advanced NAOS SiO2 layer formed with 68 wt. % HNO3 and subsequent post-metallization anneal at 250 °C are nearly identical to those of thermal oxide formed at 900 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call