Abstract
We consider the problem of optimizing the asymptotic convergence rate of a parameter-dependent nonreversible Markov chain. We begin with a single-parameter case studied by Diaconis, Holmes and Neal and then introduce multiple parameters. We use nonsmooth analysis to investigate whether the presence of multiple parameters allows a faster asymptotic convergence rate, and argue that for a specific parameterization, it does not, at least locally.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have