Abstract

A common approach for describing classes of functions and probability measures on a topological space X is to construct a suitable map Φ from X into a vector space, where linear methods can be applied to address both problems. The case where X is a space of paths [0,1]→Rn and Φ is the path signature map has received much attention in stochastic analysis and related fields. In this article we develop a generalized Φ for the case where X is a space of maps [0,1]d→Rn for any d∈N, and show that the map Φ generalizes many of the desirable algebraic and analytic properties of the path signature to d≥2. The key ingredient to our approach is topological; in particular, our starting point is a generalization of K-T Chen's path space cochain construction to the setting of cubical mapping spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.