Abstract

In pursuit of energy self-sufficiency and meeting the growing energy demand, the Philippine government has formulated its Energy Road Map for the year 2040, aiming to strengthen, continue, and accelerate the adoption of renewable energy (RE) across the archipelago. This paper presents a proposed multiple microgrid system integrated into an existing distribution system, utilizing renewable energy sources. The proposed model involves the conversion of a section of the distribution system into a microgrid setup, comprising photovoltaic (PV) energy and fuel cell (FC) technologies connected to a 13.2 kV distribution grid. A modified three-phase three-level voltage-sourced converter (VSC) is employed to control the inverter. The proposed modifications result in improved operational efficiency compared to conventional approaches. Various operating cases are considered, each with a designated power source operating according to a predefined schedule. A unified controller is employed across all operating cases, ensuring system stability. Simulation and experimental results conducted through MATLAB/Simulink demonstrate the impact of VSC in terms of voltage regulation, frequency stability, and accumulated power losses. They revealed that voltage regulation for understudy cases ranged from 0.1 to 4.5%, microgrid frequencies were between 59.1 and 60.08 Hz, and power distribution losses were at 1.2–3.3% of the generated power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call