Abstract

ObjectiveIncorporating silane-coupling agent into universal adhesives (UAs) to simplify adhesive luting of glass-ceramic restorations appeared ineffective due to silane’s instability in an acidic aqueous solution. This study aimed to evaluate new silane technology added to an experimental UA to be bonded to glass ceramics without separate prior silanization. MethodsCombined silane technology, consisting of 3-(aminopropyl)triethoxysilane (APTES) and γ-methacryloxypropyltriethoxysilane (γMPTES), was incorporated into an experimental UA formulation, being referred to as ADH-XTE (3M Oral Care). Immediate and aged shear bond strength (SBS) of ADH-XTE onto as-milled (‘AM’), tribochemical silica-coated (‘TSC’), HF-etched (‘HF’), and mirror-polished (‘MP’) glass-ceramic CAD/CAM blocks (IPS e.max CAD) with/without separate silanization was measured (n = 10/group). The control adhesives included Scotchbond Universal (‘SBU’) and Scotchbond 1 XT (‘SB1-XT’). The glass-ceramic surface topography and the fractography of the SBS-debonded specimens were observed by SEM. ResultsWithout separate prior silanization, the experimental UA ADH-XTE, containing combined APTES/γMPTES silane technology, significantly outperformed the glass-ceramic bonding efficiency of its silane-containing SBU precursor, while it performed equally effective as SBU applied with prior silanization. Upon aging, significant reduction in SBS was recorded when ADH-XTE was bonded to TSC glass-ceramic surfaces (p < 0.05), while not to HF ones. Notably, the lowest SBS was obtained when the UAs were bonded to AM and MP glass-ceramic surfaces, in particular when applied without separate prior silanization (p < 0.05). SignificanceThe glass-ceramic bonding capacity of the new combined APTES/γMPTES silane-containing UA ADH-XTE surpassed that of its SBU precursor. HF etching remains needed to durably bond to glass-ceramics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.