Abstract

This research study’s purpose was to evaluate the mechanical and chemical surface treatment methods for self-cured acrylic resin repaired with a resin composite employing a universal adhesive agent. Eighty self-cured acrylic resins were built and designed into eight groups of ten specimens and surface conditioned using sandblasting (SB) and/or with methylmethacrylate monomer (MMA) and/or universal adhesive (UA) as follows: Group 1, non-surface modified; Group 2, SB; Group 3, UA; Group 4, SB + UA; Group 5, MMA; Group 6, SB + MMA; Group 7, MMA + UA; Group 8, SB + MMA + UA. A template was put on the specimen center, and the pushed resin composites. Mechanical testing machinery was used to examine the samples’ shear bond strength (SBS) values. To examine failure patterns, the debonded specimen surfaces were examined using a scanning electron microscope. The one-way ANOVA method was used to evaluate these data, and Tukey’s test was used to determine the significance level (p < 0.05). The highest SBS was obtained in Group 8 (27.47 ± 2.15 MPa); however, it was statistically equivalent to Group 7 (25.85 ± 0.34 MPa). Group 1 (4.45 ± 0.46 MPa) had the lowest SBS, but it was not statistically significant compared to Group 2 (5.26 ± 0.92 MPa). High SBS values were frequently correlated with cohesive patterns. The application of MMA prior to UA is the best method for increasing the SBS between self-cured acrylic resin and resin composite interfaces. However, the use of SB is not significantly different from not using SB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call