Abstract

Renewable energy technologies are becoming increasingly important due to their cost-competitiveness, and because of enhanced climate concerns. We demonstrate the capabilities of an integer-programming optimization model that minimizes capital (investment) and operational costs, and utility charges, while adhering to system sizing constraints, demand requirements, and interoperability characteristics of the systems chosen. The model recommends an optimally sized mix of renewable energy, conventional generation, and energy storage technologies, while simultaneously optimizing the corresponding dispatch strategy. Our case studies explore several venues, i.e., a small campus and a local hospital, with complex utility rate tariffs, multi-technology integration opportunities, and incentives for renewable power production. Using an optimization model, versus applying rules of thumb, can produce millions of dollars in savings over a 25-year time horizon and result in thousands of kilowatts of installed renewable energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.