Abstract
Acquiring a substantial number of data points for training accurate machine learning (ML) models is a big challenge in scientific fields where data collection is resource-intensive. Here, we propose a novel approach for constructing a minimal yet highly informative database for training ML models in complex multi-dimensional parameter spaces. To achieve this, we mimic the underlying relation between the output and input parameters using Gaussian process regression (GPR). Using a set of known data, GPR provides predictive means and standard deviation for the unknown data. Given the predicted standard deviation by GPR, we select data points using Bayesian optimization to obtain an efficient database for training ML models. We compare the performance of ML models trained on databases obtained through this method, with databases obtained using traditional approaches. Our results demonstrate that the ML models trained on the database obtained using Bayesian optimization approach consistently outperform the other two databases, achieving high accuracy with a significantly smaller number of data points. Our work contributes to the resource-efficient collection of data in high-dimensional complex parameter spaces, to achieve high precision ML predictions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.