Abstract
With the increasing application of IoT devices, the memory subsystem, as the performance and energy bottleneck of IoT systems, has received a lot of attention. One of the keys is on-chip memory which can bridge the performance gap between the CPU and main memory. While many off-the-shelf embedded processors utilize the hybrid on-chip memory architecture containing scratchpad memories (SPMs) and caches, most existing literature ignores the collaboration between caches and SPMs. This paper proposes static SPM allocation strategies for the architecture mentioned above in IoT systems, which try to minimize the overall instruction memory subsystem latency and/or energy consumption. We capture the intra- and inter-task cache conflict misses via a fine-grained temporal cache behavior model. Based on this cache conflict information, we propose an integer linear programming (ILP) algorithm to generate an optimal static function level SPM allocation for system performance. Furthermore, to improve the scalability of the proposed allocation scheme for an enormous task set, we offer the interference factor to calculate the interference impact quantitatively. Then, based on the interference factor, we present two approximate knapsack based heuristic algorithms to provide near optimal static allocation schemes at both function- and basic block-level granularities, which favors fast design space exploration. The experiment results demonstrate that the proposed solution achieves a 30.85% improvement in memory performance, and up to 31.39% reduction in energy consumption, compared to the existing SPM allocation scheme at the function level. In addition, the proposed basic block level allocation algorithm shows better performance than our function level allocation algorithm and other basic block level allocation algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have