Abstract
The recently proposed stacked nanosheet-field-effect transistor (SNSH-FET) is considered as a promising candidate for continued scaling with silicon. While using punchthrough-stopper-doped (or) ground-plane-doped silicon substrate (PTS-Si substrate) in which the top part of the substrate is doped heavily with the p-type (for nMOS) impurity to avoid punchthrough leakage between the source and the drain. The heavily doped p–n junction formed at the drain–substrate junction acts as a reverse-biased tunnel diode during ${V}_{{\text {DS}}}$ biasing, which leads to large substrate leakage current. We presented SuperSteep-Retrograde silicon substrate (SSR-Si substrate) configuration which reduces the tunneling current by increasing the tunnel barrier width and diminishing the peak electric field at the drain–substrate junction. The SSR-Si substrate is achieved by growing a lightly doped or undoped layer of silicon (SSR-buffer layer) on the PTS-doped substrate. The impact of SSR-buffer layer thickness is studied and the optimal thickness (12 nm) is presented. The vertically stacked channels’ configuration leads to position-dependent current densities in different channels due to position-dependent series resistance. Herein, we present nanosheet width optimization as a solution to achieve homogeneous current ratio between all the channels thereby resulting in better linearity performance. The self-heating and RF performance of the presented SSR-Si substrate is compared with the silicon-on-insulator (SOI) substrate. The results show that SSR-Si substrate can be a better substrate for SNSH-FET because of better self-heating performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.