Abstract

We consider stochastic optimization problems where risk-aversion is expressed by a stochastic ordering constraint. The constraint requires that a random vector depending on our decisions stochastically dominates a given benchmark random vector. We identify a suitable multivariate stochastic order and describe its generator in terms of von Neumann–Morgenstern utility functions. We develop necessary and sufficient conditions of optimality and duality relations for optimization problems with this constraint. Assuming convexity we show that the Lagrange multipliers corresponding to dominance constraints are elements of the generator of this order, thus refining and generalizing earlier results for optimization under univariate stochastic dominance constraints. Furthermore, we obtain necessary conditions of optimality for non-convex problems under additional smoothness assumptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.