Abstract

We introduce a new preference relation in the space of random variables, which we call robust stochastic dominance. We consider stochastic optimization problems where risk-aversion is expressed by a robust stochastic dominance constraint. These are composite semi-infinite optimization problems with constraints on compositions of measures of risk and utility functions. We develop necessary and sufficient conditions of optimality for such optimization problems in the convex case. In the nonconvex case, we derive necessary conditions of optimality under additional smoothness assumptions of some mappings involved in the problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.