Abstract

nanoparticles were prepared through the Pechini process and were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR spectrometer, and differential thermal analysis (TG-DSC) analyses. The polyesterification reaction, as the starting step, has a profound influence on the dispersion of the resulting nanoparticles. The molar ratios CA : TM = 2 and EG : CA = 1.5 are favorable for the preparation of nanoparticles having average particles size ranging from 2 to 9 nm. Meanwhile, the molar ratios CA : TM = 4 and EG : CA = 0.19 are favorable for the preparation of nanoparticles having an average particles size ranging from 11 to 29 nm. For the calcination step, increased calcination time (eight hours) at 500°C is advantageous for allowing the monometallic phases enough time to transform into the desired bimetallic phase.

Highlights

  • IntroductionAre well-known metal oxides with similar physical and chemical properties

  • Molybdenum trioxide (MoO3 ) and tungsten trioxide (WO3 )are well-known metal oxides with similar physical and chemical properties

  • For most of the prepared samples, aqueous ethylene glycol (EG) solutions of different concentrations were added to an aqueous solution of citric acid (CA) for polymerization under constant stirring and at 60◦ C for 1 h

Read more

Summary

Introduction

Are well-known metal oxides with similar physical and chemical properties. They show n-type semiconducting properties related to the presence of lattice defects, mainly oxygen defects [1, 2], and they have been extensively studied for their potential applicability in gas sensing devices [3, 4]. One of the recently investigated methods for the simple preparation of nano-oxide composites that include molybdenum or tungsten atoms is the Pechini method [11, 12]. The synthesis of molybdenum-tungsten oxide nanoparticles is presented. The procedure includes the formation of composites containing both molybdenum or tungsten atoms in a 1 : 1 ratio using the polymeric method. The impacts of the temperature and time of calcination were examined

Experimental
The Role of Reactant Molar Ratios
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.