Abstract

We have established a simulation platform for the machine–electro-hydraulic coupling system of the transmission system and the control system to study the root causes of the problems of large shifting impact and slow change of the machine tool transmission system. The dynamic analysis of the gear shift work of the gearbox was carried out, and the main factors affecting its shift instability were studied. With the impact and sliding power as the optimization goals, the shift quality is optimized based on the multi-objective genetic algorithm. Through the shift experiment, it was found that the power interruption phenomenon during the shift process was eliminated after optimization, and the quality of the shift was improved. Simulated planetary row wheel gear meshing force was found in the same gear, and the second planetary row gear meshing force was the largest among the planetary rows. The stress of the node near the top of the tooth is greater than the stress of the node near the node circle and the root of the tooth, and the two sides of the tooth top are relatively larger than the intermediate stress. The dynamic simulation model of the planetary gearbox system with rigid–soft hybrid can obtain the stress distribution of the solar wheel at the maximum impact moment and the stationary stage, as well as the dynamic stress of the key nodes of the solar wheel, which lays the foundation for the fatigue strength and life prediction of the gear system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.