Abstract
In welding, so many factors contribute to good quality welds. The deposition rate is the rate of weld metal deposit at fusion zone during welding, which also is a key factors affecting the quality of welded joints. Too high or low deposition rate compromises the integrity of weld. This study was carried out with the aim of providing an approach for producing better weldments by optimizing and predicting deposition rate of low carbon steel using Response Surface Methodology (RSM). 30 sets of experiments were done, adopting the central composite experimental design. The tungsten inert gas welding equipment was used to produce the welded joints. Argon gas was supplied to the welding process to shield the weld from atmospheric interference. Mild steel coupons measuring 60 × 40 × 10 mm was used for the experiments. The results obtained show that the voltage and current have very strong influence on the deposition rate. The models developed possess a variance inflation factor of 1. And P-value is less than 0.05, indicating that the model is significant. The models also possessed a high goodness of fit with R2 (Coefficient of determination) values of 91%. The model produced numerically obtained optimal solution of current of 160.00 Amp, voltage of 20 volts and a gas flow rate of 17 L/min produces a welded material having deposition rate of 0.4637 kg/hr. This solution was selected by design expert as the optimal solution with a desirability value of 98.8%. A weld simulation using the optimum value obtained produced a weld with good quality.
Highlights
According to [1] in industries like ship building, pressure vessel, off shore, aviation, heavy construction, the need of higher metal deposition rate welding is always required to increase the productivity
Taguchi’s design of experiment (DOE) approach is used to plan and design the experiments to study the effect of welding process parameters on metal deposition rate and hardness of the weld bead. [8] claimed that different process parameters of Gas Tungsten Arc Welding (GTAW) affect the weldment quality
The study reveals that respond surface methodology (RSM) produced a good model for predicting weld deposition rate. it was observed that a current of 160.020 amp, voltage of 20.00 vol, a welding speed of 47.460 cm/min and gas flow rate of 17.000 L/min will result in a welding process with weld deposition rate (WDR) 0.436708 kg/hr
Summary
According to [1] in industries like ship building, pressure vessel, off shore, aviation, heavy construction, the need of higher metal deposition rate welding is always required to increase the productivity. Metal deposition in combination with fabrication offers a product with high structural integrity, produced with a minimum of scrap. Several techniques have been developed to improve the metal deposition rate beyond that of standard, single wire SAW to increase the productivity. According to [7], Tungsten Inert Gas Arc Welding is a commonly used welding technique due to its versatility and ease that can be maintained in almost all type of working conditions. Taguchi’s DOE approach is used to plan and design the experiments to study the effect of welding process parameters on metal deposition rate and hardness of the weld bead. Increasing welding current increases the deposition rate and reduces the hardness
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have