Abstract

In the present study, AA7039/Al2O3 metal matrix composites were produced by powder metallurgy and the effect of milling parameters on surface roughness and cutting force using an uncoated carbide insert were investigated. The milling tests were performed based on the Taguchi design of experiment method using L18 21×32 with a mixed orthogonal array. The effects of the cutting parameters on surface roughness and cutting force were determined by using analysis of variance (ANOVA). The analysis results showed that material structure was the most effective factor on surface roughness and feed rate was the dominant factor affecting cutting force. Surface roughness values were significantly improved by between 196% and 312% in milling Al2O3 particle-reinforced aluminum alloy composite compared to AA7039 aluminum. Artificial neural networks (ANN) and regression analysis were used to predict surface roughness and cutting force. ANN was able to predict the surface roughness and cutting force with a mean squared error equal to 2.25% and 6.66% respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.