Abstract
An optimization study of a single-pass transuranic (TRU) deep burn (DB) has been performed for a block-type modular helium reactor (MHR) proposed by General Atomics. A high-burnup TRU feed vector from light water reactors is considered: 50 GWd/tU burnup with 5-yr cooling. For three-dimensional equilibrium cores, the performance analysis is done by using McCARD, a continuous-energy Monte Carlo depletion code. The core optimization is performed from the viewpoints of the core configuration, fuel management, tristructural-isotropic (TRISO) fuel specification, and neutron spectrum. With regard to core configuration, two annular cores are investigated in terms of the neutron economy. A conventional radial shuffling scheme of fuel blocks is compared with an axial-only block-shuffling strategy in terms of the fuel burnup and core power distributions. The impact of the kernel size of the TRISO fuel is evaluated, and a diluted kernel, instead of a conventional concentrated kernel, is introduced to maximize the TRU burnup by reducing the self-shielding effects of the TRISO particles. A higher graphite density is also evaluated in terms of the fuel burnup. In addition, it is shown that the core power distribution can be effectively controlled by a zoning of the packing fraction of the TRISO fuels. We also have shown that a long-cycle DB-MHR core can be designed by using a two- or three-batch fuel-reloading scheme, at the expense of only a marginal decrease of the TRU discharge burnup. Finally, preliminary safety characteristics of a DB-MHR core have been investigated in terms of the temperature coefficients and effective delayed neutron fraction. It has been found that, depending on the fuel management scheme and fuel specifications, the TRU burnup in an optimized DB-MHR core can be well over 60% in a single-pass irradiation campaign.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.