Abstract

The height of vertical pier retaining wall is relatively larger in regions with great height of water. As the retaining wall becomes higher, the cross-sectional area of ordinary gravity pier structure becomes larger and foundation strength needs to be larger, thus there are some restrictions for traditional structure form. This research focuses on new structure forms of high concrete retaining wall and its optimization design for piers in regions with great height of water. This study establishes a nonlinear constrained mathematical model of pier high retaining wall structures. The objective function is cross-sectional area of the pier retaining wall which is restricted by the stability, bearing capacity of foundation and strength of cross-section of retaining wall. This model is solved by fmincon function from Matlab and the results present an economically reasonable cross-section form. This new selection is greatly significant to improve the stability of high concrete retaining wall and reduce the project cost. The new structure is successfully used in a port of Huaihe River and it can be a solution to pier structure selection problem in regions with great height of water in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call