Abstract

In this study, amphoteric graft copolymer-based flocculants were prepared by conventional peroxy graft copolymerization of acrylamide (AM) onto carboxymethyl chitosan (CMCH) using potassium persulphate (PPS) initiator. The optimization of grafting of AM onto CMCH was carried out by studying the influence of various process parameters including CMCH, acrylamide and PPS concentration, as well as reaction temperature and time on percent grafting. FTIR spectral and thermal analyses of polyacrylamide/carboxymethyl chitosan graft copolymer (CMCH-g-PAM) were studied to furnish evidence of grafting. By performing the grafting process via reacting carboxymethyl chitosan (2%), acrylamide (6%) in presence of PPS (0.1%), highest grafting percentage was found at reaction temperature of 55 ⁰C with reaction time of three hours. The flocculation of the kaolinite suspensions was investigated by studying the effect of CMCH-g-PAM dosage, treatment time and pH of suspensions. The graft co-polymer flocculants resultant in this study exhibited higher efficiency comparing with those obtained from homo-polymers of carboxymethyl chitosan or polyacrylamide. Furthermore, the flocculation efficiency of these grafted copolymers was significantly increased with increasing the grafting percentage, where the maximum efficiency (93%) was attained at the highest grafting percentage (146%).

Highlights

  • Water pollution is owing to all human activities including domestic, industrial and agricultural and the causes of pollution in water can be considered endless

  • Amphoteric graft copolymer-based flocculants were prepared by conventional peroxy graft copolymerization of acrylamide (AM) onto carboxymethyl chitosan (CMCH) using potassium persulphate (PPS) initiator

  • The initial increase in the grafting percentage associated with the increase of carboxymethyl chitosan concentration can be attributed to the increase in the number of active sites on carboxymethyl chitosan molecules leading to accommodate

Read more

Summary

Introduction

Water pollution is owing to all human activities including domestic, industrial and agricultural and the causes of pollution in water can be considered endless. Journal of Research & Developments in Chemistry manufacturing plants is a major cause of water pollution that carries away their waste that can contain various dissolved or suspended harmful and toxic substances in fresh water bodies. Nutrients and organic load as chemical oxygen demand (COD) contribute major pollutants in these bodies. The economic performance, including investment costs and operation of conventional waste treatment are prohibitive for a variety of industrial simulation, small-scale sector. In this case, the physical-chemical coagulation-flocculation process is a most used key step in the primary purification of industrial wastewater and effluents and in some cases in secondary and tertiary treatment [2]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.