Abstract
A novel methodology for calculating optimized refurbishment roadmaps is developed in this paper. The aim of the roadmaps is to determine when and how should which component of the building envelope and heat generation system be refurbished to achieve the lowest net present value. The integrated optimization approach couples a particle swarm optimization algorithm with a dynamic building simulation of the building envelope and the heat supply system. Due to a free selection of implementation times and refurbishment depth, the optimization method achieves the lowest net present value and high CO2 reduction and is therefore an important contribution to achieve climate neutrality in the building stock.The method is exemplarily applied to a multi-family house built in 1970. In comparison to a standard refurbishment roadmap, cost savings of 6–16 % and CO2 savings of 6–59 % are possible. The sensitivity of the refurbishment roadmap measures is analyzed on the basis of a parametric analysis. Robust optimization results are obtained with a mean refurbishment level of approx. 50 kWh/m2/a of the building envelope. The preferred heat generation system is a bivalent brine-heat pump system with a share of 70 % of the heat load being covered by the electric heat pump.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have