Abstract

Corn starch was dually modified using thermostable α-amylase and pullulanase to prepare resistant starch (RS). The concentration of starch liquid, the amount of added thermostable α-amylase, the duration of enzymatic hydrolysis and the amount of added pullulanase were optimized using RSM to increase RS content of the treated sample. The optimum pretreatment conditions were 15% starch liquid, 3 U/g thermostable α-amylase, 35 min of enzymatic hydrolysis and 8 U/g pullulanase. The maximum RS content of 10.75% was obtained, and this value was significantly higher than that of native corn starch. The degree of polymerization (DP) of the enzyme-modified starch decreased compared with that of native starch. The scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were performed to assess structural changes in native and pretreated starch. The effect of dual enzyme pretreatment on the structure and properties of corn starch was significant. Unlike the untreated one, the pretreated corn starch showed clear pores and cracks. Significant differences in RS contents and structural characterization between starch pretreated and untreated with dual enzymes demonstrated that the dual enzyme modification of corn was effective in enhancing RS contents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call