Abstract

Normal corn, Hylon V and Hylon VII starches were partially degraded by acid-ethanol treatment and applied to heat-moisture treatment (HMT) for improving the enzymatic resistance of starch. The weight-average degree of polymerization (DP w) of acid-ethanol-treated (AET) corn starches ranged from 6.75 × 10 5 to 181, 4.48 × 10 5 to 121, and 1.94 × 10 5 to 111 anhydrous glucose units for normal corn, Hylon V and Hylon VII starches, respectively. Starch retained its granular structure after AET and HMT, recovery of starch granules after modifications were higher than 92%. Resistant starch (RS) content and boiling-stable RS content of corn starch increased after dual modification, and the increment increased with increasing duration of AET. The boiling-stable RS content of dual-modified starch increased from 1.5 to 9.2, 12.2 to 24.1, and 18.0 to 36.2% for normal corn, Hylon V and Hylon VII starches, respectively. Increments of RS content and boiling-stable RS content of dual-modified starches were significantly correlated ( r 2 > 0.700) with DP w of starch, revealing that the enzymatic resistance of dual-modified corn starch granules increased with decreasing molecular size of starch. Result also suggested that starch granules partially degraded with AET could improve the molecular mobility and ordering during the consequent HMT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call