Abstract
In the past few decades, attention and research in the field of stem cell are progressing very rapidly. Hospitals in Indonesia have been using stem cells as an alternative to cure some illnesses like diabetes, heart disease, fractures and joints, dental implants, etc. Currently, adult stem cells can be obtained not only from the spinal cord and peripheral vessels, but also from fat tissues of the human body, where it can be isolated as adherent stem cells (mesenchymal stem cells). Consideration of fat tissue as the source of mesenchymal stem cells (MSCs) for autologous tissue engineering is because they are readily available in abundant quantities through minimal invasive procedures, as well as easily cultured and propagated. It is possible to proliferate and differentiate into the desired direction of the network. Stem cell growth requires conditions to grow such as requiring optimum growing conditions such as an environmental temperature of 37°C and a concentration of 5% CO2. Maintenance of MSCs also requires a subculture process, i.e. the process of moving MSCs from a full culture medium to new media; continuous subculture process can cause changes in MSCs. The viability of stem cells may be disrupted by micro-conditions in wounds such as hypoxia, oxidative stress, and inflammation. Therefore, the purpose of this research was to investigate whether alginate-based encapsulation can increase and maintenance stem cell growth at different temperature by using some concentration of alginate and CaCl2 as the formula. Results shown that alginat with low concentration and CaCl2 100mM is suitable for MSCs growth (as in MTT result shown) at 25°C temperature. This can be due to the MSCs encapsulated can adapt and grow within the alginate microcapsule with low concentration. In addition, the media may also easier to get into the microcapsule alginate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.