Abstract

The authors report on the fabrication of subsurfaced 100–600 nm wide nanochannels in fused silica with top slit openings in the size range of 5–10 nm. Such nanochannels can be used in combination with a nanofluidics system to guide molecular motors and quickly switch the chemical environment inside the nanochannels through diffusion via the top slits. To realize nanochannel top slits in this size range, the authors here demonstrate the use of a self-closing effect based on the volume expansion of a thin Si layer during oxidation. A high contrast electron beam lithography exposure step in conjunction with dry etching of SiO2 by reactive ion etching (RIE) and Si by inductively coupled plasma-RIE followed by wet etching of a fused silica substrate is used to create the initial slit before oxidation. The details of nanochannel fabrication steps are described and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.