Abstract

Buildings are amongst the world’s largest energy consumers and simultaneous peaks in demand from networks of buildings can decrease electricity system stability. Current mitigation measures either entail wasteful supply-side over-specification or complex centralised demand-side control. Hence, a simple schema is developed for decentralised, self-organising building-to-building load coordination that requires very little information exchange and no top-down management—analogous to other complex systems with short range interactions, such as coordination between flocks of birds or synchronisation in fireflies. Numerical and experimental results reveal that a high degree of peak flattening can be achieved using surprisingly small load-coordination networks. The optimum reductions achieved by the simple schema can outperform existing techniques, giving substantial peak-reductions as well as being remarkably robust to changes in other system parameters such as the interaction network topology. This not only demonstrates that significant reductions in network peaks are achievable using remarkably simple control systems but also reveals interesting theoretical results and new insights which will be of great interest to the complexity and network science communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call