Abstract
New second order optimality conditions for mathematical programming problems and for the minimization of composite functions are presented. They are derived from a general second order Fermat's rule for the minimization of a function over an arbitrary subset of a Banach space. The necessary conditions are more accurate than the recent results of Kawasaki (1988) and Cominetti (1989); but, more importantly, in the finite dimensional case they are twinned with sufficient conditions which differ by the replacement of an inequality by a strict inequality. We point out the equivalence of the mathematical programming problem with the problem of minimizing a composite function. Our conditions are especially important when one deals with functional constraints. When the cone defining the constraints is polyhedral we recover the classical conditions of Ben-Tal--Zowe (1982) and Cominetti (1990).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have