Abstract

In this paper, we investigate new generalizations of Fritz John (FJ) and Karush–Kuhn–Tucker (KKT) optimality conditions for nonconvex nonsmooth mathematical programming problems with inequality constraints and a geometric constraint set. After defining generalized FJ and KKT conditions, we provide some alternative-type characterizations for them. We present characterizations of KKT optimality conditions without assuming traditional Constraint Qualification (CQ), invoking strong duality for a sublinear approximation of the problem in question. Such characterizations will be helpful when traditional CQs fail. We present the results with more details for a problem with a single-inequality constraint, and address an application of the derived results in mathematical programming problems with equilibrium constraints. The objective function and constraint functions of the dealt with problem are nonsmooth and we establish our results in terms of the Clarke generalized directional derivatives and generalized gradient. The results of the current paper cover classic optimality conditions existing in the literature and extend the outcomes of Flores-Bazan and Mastroeni (SIAM J Optim 25:647–676, 2015).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.