Abstract
In this paper we analyze the Fritz John and Karush--Kuhn--Tucker (KKT) conditions for a (Gâteaux) differentiable nonconvex optimization problem with inequality constraints and a geometric constraint set. The Fritz John condition is characterized in terms of an alternative theorem which covers beyond standard situations, while characterizations of KKT conditions, without assuming constraints qualifications, are related to strong duality of a suitable linear approximation of the given problem and the properties of its associated image mapping. Such characterizations are suitable for dealing with some problems in structural optimization, where most of the known constraint qualifications fail. In particular, several examples are given showing the usefulness and optimality, in a certain sense, of our results, which provide much more information than those (including the Mordukhovich normal cone or Clarke's) appearing elsewhere. The case with a single inequality constraint is discussed in detail by establishing...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.