Abstract

This paper presents a multi-stage day-ahead and real-time optimization algorithm for scheduling of system’s energy resources in the normal and external shock operational conditions. The main contribution of this paper is that the model considers the non-utility electricity generation facilities capacity withholding opportunities in the optimal scheduling of system resources. The real-time simulation of external shock impacts is another contribution of this paper that the algorithm simulates the sectionalizing of the system into multi-microgrids to increase the resiliency of the system. The optimization process is categorized into two stages that compromise normal and contingent operational conditions. Further, the normal operational scheduling problem is decomposed into three steps. At the first step, the optimal day-ahead scheduling of system resources and the switching of normally opened switches are determined. At the second step, the optimal real-time market scheduling is performed and the switching of normally closed switches is optimized. At the third step, different extreme shock scenarios are simulated in the real-time horizon and the effectiveness of sectionalizing the system into multi-micro grids are assessed. Finally, at the contingent operational conditions, the optimal topology of the system and scheduling of energy resources are determined. The proposed method was successfully assessed for the 33-bus and 123-bus test systems. The algorithm were reduced the expected cost of the worst-case contingencies for the 33-bus and 123-bus systems by about 97.89% and 88.11%, respectively. Further, the average and maximum values of the 123-bus system capacity-withholding index for real-time conditions reduced by about 67.40% and 71.05%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.