Abstract

This work addresses a stochastic framework for optimal coordination of a microgrid-based virtual power plant (VPP) that participates in day-ahead energy and ancillary service markets. The microgrids are equipped with different types of distributed energy resources. A two-stage optimization formulation is proposed to maximize the benefit of the virtual power plant and minimize the energy procurement costs of the Distribution System Operator (DSO). The proposed model determines the optimal commitment scheduling of energy resources, considering the capacity withholding opportunities of the VPP that should be detected by the DSO. To evaluate the effectiveness of the proposed model, the algorithm is assessed for the 123-bus IEEE test system. The results show that the proposed method successfully maximizes the virtual power plant profit considering capacity withholding penalties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.