Abstract
Optimal pressure management in water distribution systems (WDSs) is one of the most efficient approaches to control water leakage for water utilities worldwide. The optimal pressure management can be accomplished through regulating operations of pressure reducing valves (PRVs) to ensure that the excessive pressure in the WDS is minimized. This engineering task can be casted into a nonlinear program problem (NLP) with non-smooth constraints. Until now, the non-smooth constraints have been approximated by the smoothing function of Chen Harker-Kanzow-Smale (CHKS). In this paper, instead of using the CHKS function, we propose to apply the uniform smoothing function for formulation of the NLP. Numerical simulations using two smoothing functions will be carried out for optimal pressure managements of a benchmark WDS and a real-world WDS in Thainguyen City, in Vietnam. The comparison results reveal that the NLP formulated with the uniform smoothing function outperforms the existing NLP formulated with the CHKS in terms of optimal solution accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Science and Technology - Technical Universities
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.